A finite volume scheme for nonlinear degenerate parabolic equations
نویسندگان
چکیده
We propose a second order finite volume scheme for nonlinear degenerate parabolic equations. For some of these models (porous media equation, drift-diffusion system for semiconductors, ...) it has been proved that the transient solution converges to a steady-state when time goes to infinity. The present scheme preserves steady-states and provides a satisfying long-time behavior. Moreover, it remains valid and second-order accurate in space even in the degenerate case. After describing the numerical scheme, we present several numerical results which confirm the high-order accuracy in various regime degenerate and non degenerate cases and underline the efficiency to preserve the large-time asymptotic.
منابع مشابه
Convergence of a finite volume scheme for nonlinear degenerate parabolic equations
We propose a second order finite volume scheme for nonlinear degenerate parabolic equations. For some of these models (porous media equation, drift-diffusion system for semiconductors, ...) it has been proved that the transient solution converges to a steady-state when time goes to infinity. The present scheme preserves steady-states and provides a satisfying long-time behavior. Moreover, it re...
متن کاملFinite Volume Schemes for Nonlinear Parabolic Problems: Another Regularization Method
Abstract. On one hand, the existence of a solution to degenerate parabolic equations, without a nonlinear convection term, can be proven using the results of Alt and Luckhaus, Minty and Kolmogorov. On the other hand, the proof of uniqueness of an entropy weak solution to a nonlinear scalar hyperbolic equation, first provided by Krushkov, has been extended in two directions: Carrillo has handled...
متن کاملConvergence of a nonlinear entropy diminishing Control Volume Finite Element scheme for solving anisotropic degenerate parabolic equations
In this paper, we propose and analyze a Control Volume Finite Elements (CVFE) scheme for solving possibly degenerated parabolic equations. This scheme does not require the introduction of the so-called Kirchhoff transform in its definition. We prove that the discrete solution obtained via the scheme remains in the physical range, and that the natural entropy of the problem decreases with time. ...
متن کاملUniform-in-time convergence of numerical methods for non-linear degenerate parabolic equations
Gradient schemes is a framework that enables the unified convergence analysis of many numerical methods for elliptic and parabolic partial differential equations: conforming and non-conforming Finite Element, Mixed Finite Element and Finite Volume methods. We show here that this framework can be applied to a family of degenerate non-linear parabolic equations (which contain in particular the Ri...
متن کاملError estimates for the finite volume discretization for the porous medium equation
In this paper we analyze the convergence of a numerical scheme for a class of degenerate parabolic problems. Such problems are often used to model reactions in porous media, and involve a nonlinear, possibly vanishing diffusion. The scheme considered here involves the Kirchhoff transformation coupled with the regularization of the nonlinearity, and is based on the Euler implicit time stepping a...
متن کامل